
26 The Delphi Magazine Issue 70

How CLX Uses Qt
by Brian Long

Kylix has been here since March
and Delphi 6 is announced and

as you read this should be very
close to being shipped. This means
Borland’s CLX library (pro-
nounced clicks) is now a truly
cross-platform component library
(CLX is a fabricated acronym for
Component Library for Cross-
platform, where the word Cross is
abbreviated to an X). CLX code can
be compiled for Linux in Kylix or
for Windows in Delphi 6, whilst
those who are not interested in
cross-platform development can of
course continue using the VCL,
pronounced vee-see-ell.

This article looks under the
hood of the CLX library to see how
it uses Trolltech’s cross-platform
Qt C++ class library (pronounced
cute). It starts by looking at what Qt
is and why it was chosen as the
basis for the CLX library, and then
moves on to see how it has been
integrated with the Object Pascal
language in Kylix and Delphi. An
understanding of how Qt is used
will be helpful when writing
custom components, and also
when you need to call Qt directly
when a component does not offer
all the facilities you require.

Since a CLX application involves
talking to C++ classes, there is a
certain amount of complexity
involved to get it working. Whilst I
have tried to take things a step at a
time, with each step being as small
as possible, it may be necessary to
re-read sections of this article a
number of times until things
become clear.

Alternatively, if things get too
confusing, read the article through

to the end and then start at the
beginning again.

More information can be
obtained on a variety of topics
touched on throughout this article
by following the references in the
Further Reading section at the end.

The Qt Library
Most of us are quite used to the
Windows operating system (OS).
We are used to the fact that the OS
is GUI-based and we are used to the
fact that it comes equipped with
quite a few built-in controls,
such as buttons, listviews, edits,
toolbars and treeviews.

Linux is not the same at all. The
Linux OS is really a text mode
system. The GUI that might be
associated with Linux (X Win-
dows) is really just an application
running on Linux that implements
a GUI. In fact, whilst X has certain
functionality built-in (like being
able to run on one machine, whilst
displaying programs running on
another), it does not have any
built-in controls. All it knows about
are plain windows and some basic
keyboard and mouse-based
events.

What Is Qt?
In order for applications to present
familiar controls to users, the pro-
grammer must either implement
them or use libraries of pre-built
controls. Such control libraries are
called widget sets, where each con-
trol is a widget. According to the
book X Window Programming from
Scratch a widget set is ‘a group of
components that manage different
aspects of a graphical user interface.

Elements such as
menus, buttons, scroll-
bars, and text fields are
entities provided by a
widget set.’ There are
a variety of these

widget sets available, accommo-
dating various requirements, and
Qt is one of them.

Qt has been available since 1995
from the Norwegian development
company Trolltech AS (Figure 1
shows the product logo). In the
company’s own words: ‘Qt is a
cross-platform C++ GUI application
framework. It provides application
developers with all the functionality
needed to build state-of-the-art
graphical user interfaces. Qt is fully
object- oriented, easily extensible,
and allows true component pro-
gramming.’

So Qt is an X widget set, but
which also works on other
operating systems, notably
Microsoft Windows. Qt is a popu-
lar widget set, and is used in the
development of the KDE desktop
environment (note that the desk-
top environment is another
bolt-on option in X, unlike in MS
Windows, and there are a variety
to choose from, including the pop-
ular KDE and GNOME desktops).
The GNOME desktop environ-
ment, on the other hand, is built
using the GTK widget set.

The different choices made by
the desktop environment develop-
ers do not affect any other applica-
tions. An application built with the
GTK widget set will happily run in
KDE and a Qt application will run
perfectly well in GNOME (as long
as the appropriate widget set
libraries are available).

Why Qt?
When the VCL was written it was
designed as an ObjectPascal class
library, which included wrappers
for all the existing Windows con-
trols, and a number of other utility
classes (for such things as data-
base access). The TButton class
wrapper, for example, does not
implement button functionality at
all. That is left to the button con-
trol in Windows, implemented by
Microsoft, which does the job
perfectly well.

When planning the development
of Delphi for the Linux platform,
Borland looked at the VCL and
decided it was too Windows-
dependent to massage into
working on Linux. Instead, it

➤ Figure 1:
The Qt logo.

June 2001 The Delphi Magazine 27

decided to keep the VCL for just
the Windows platforms and create
a new cross-platform library,
which was ultimately called CLX.

CLX was planned to be suitable
for both Linux and Windows, and
potentially other platforms in the
future, but firstly needed to work
on Linux. For this to work,
Borland was obliged to choose a
widget set to use as a basis. Either
that, or it would have to fully imple-
ment all the controls from scratch
on Linux, which is not a task to be
taken lightly. The whole point of
widget sets being available is that it
saves you doing the job of
implementing lots of controls
yourself.

The developers looked carefully
at a number of widget sets, primar-
ily GTK and Qt, to see what advan-
tages and disadvantages each set
held for the job. After much
examination, it turned out that:
➢ Qt is closer to the Windows

style of development than GTK.
➢ The Qt graphics model is closer

to VCL graphics model.
➢ Qt classes look very much like

VCL components, with get/set
method pairs being used where
the VCL uses properties (eg
caption/setCaption in the
button widget).

➢ The Qt object model is very sim-
ilar to the VCL object model
(there is a QApplication object
which handles the message/
event loop, as well as QButton,
QListBox, QComboBox and so on).

➢ The Qt event model is quite sim-
ilar to the VCL event model, al-
though it supports multiplexing
(the equivalent of having multi-
ple event handlers responding
to one event).

Ultimately, they felt that using Qt
would be quicker than adapting
GTK, and so CLX is built on top of
Qt. Or, to be more precise, the
visual portion of CLX, VisualCLX, is
built on top of Qt. The other areas
of CLX do not require Qt.

During the development of CLX,
Borland worked with the most
up-to-date version of Qt and found
the odd problem here and there.
The Kylix 1.0 CD ships with a
patched version of Qt version 2.2.4,
current at the time, and includes

the source code patches in the
/patches/qt directory.

Where Do I
Find Out About Qt?
To find out about the Qt class
library you can read the documen-
tation at http://doc.troll.no. This
HTML-based documentation is
very comprehensive and warrants
quite some browsing (see Figure
2). You can have this documenta-
tion locally by downloading the Qt
Free Edition from www.trolltech.
com/dl/qtfree-dl.html. The down-
load primarily includes the version
of the Qt library needed for build-
ing free and Open Source C++ appli-
cations, which is of course
irrelevant for Kylix developers
using ObjectPascal.

You can also read about Qt pro-
gramming concepts and principles
in a couple of books on the subject
(see the Further Reading section).

The Qt Interface Library
As I mentioned, Qt is a C++ class
library. The Linux version of Qt
2.2.4 (libqt.so.2.2.4) weighs in at
6.59Mb. A Kylix CLX application
does not link directly to this library
as there are inherent problems
trying to call methods of C++
classes from ObjectPascal. The
problems include differences

between the layouts of the classes
and their vtables, constructs
which do not translate such as C++
templates, and also C++’s name
mangling process (also referred
to as name decoration), which
perhaps warrants some further
discussion.

Since any C++ method can be
overloaded (redefined with the
same name but different argument
lists), the compiler uniquely iden-
tifies each method by adding char-
acters to its name to specify the
type of each argument, the calling
convention and so on. This makes
the real, compiled, name of any
method most unpleasant and
would make talking to Qt quite an
illegible process.

There is also the problem of the
C++ language specification not
defining how name mangling takes
place, leaving each C++ compiler
free to make up its own rules. In
short, it is a problem talking to
exported C++ class methods from
ObjectPascal.

To overcome this problem
Borland supplies a Qt interface
library (the Linux version is called
libqtintf.so.2.2.4 and is 1.5Mb).
Since ObjectPascal does not

➤ Figure 2: The comprehensive
Qt online documentation.

28 The Delphi Magazine Issue 70

support exporting of classes (only
standalone functions and vari-
ables), this interface library does
not export ObjectPascal classes
that hide the nastiness of calling
the C++ classes. Instead, it takes
another approach. Each individual
member function of each Qt C++
class deemed interesting is individ-
ually exported from the library as a
standalone function.

What Are Flat Methods?
To understand how this can be
achieved relies on knowing how a
method call differs from a function
call. When you call a function,

every argument expected by the
function is formally declared in the
function declaration. When the
function is called, each argument is
passed to the function in an order
defined by the function’s calling
convention.

When you call a method through
an object reference, much the
same thing happens with one dif-
ference. An extra (hidden) parame-
ter is passed into the routine. This
hidden parameter is called Self in
ObjectPascal (and this in C++) and
gets its value from the object
reference through which the
method was called (the parameter

itself is accessible, only the
declaration is hidden).

This is done so that any refer-
ences to class data fields are
resolved correctly. Remember
that each instance of a class (each
object) gets its own copy of the
data defined in the class. When a
method executes, any references
to data fields must access the data
field for the correct instance. To
accomplish this, the method code
executes in the scope of Self, as if
in a statement like:

with Self do
//method code

So, assuming you can get an appro-
priate function/procedure decla-
ration, you can call any method as
if it were a normal routine simply
by passing an object reference as
the first parameter.

This might be a little clearer if we
look at an example where a Delphi
method is accessed just like a
normal routine. To do this will
require a procedural variable (in
essence this is a function pointer)
whose type matches the method,
but with one additional parameter.
The variable will be assigned the
method’s address and is intended
to be a representation of one of the
routines exported from the Qt
interface library.

First, however, let’s see the
method being called normally (see
Listing 1). Nothing particularly
unusual to report here. Listing 2
shows the object still being con-
structed using normal Object
Pascal code, but has the method
being called through the proce-
dural variable. Note the extra TFoo
parameter in the argument list,
which becomes Self in the method
implementation.

This can be taken a step further.
The call to the constructor can
also be made through a function
pointer (so long as you know any
details of hidden arguments that
may be required), as can the
destructor if needed.

In the case of Delphi objects, we
normally avoid calling the
destructor directly, and call the
Free method instead (which
checks that the object reference is

type
TFoo = class
public
procedure ShowInfo(const Info: String);

end;
procedure TFoo.ShowInfo(const Info: String);
begin
ShowMessageFmt('%s: %s', [ClassName, Info])

end;
procedure TForm1.Button1Click(Sender: TObject);
var
Foo: TFoo;

begin
Foo := TFoo.Create;
Foo.ShowInfo('Called through a normal method');
Foo.Free;

end;

➤ Listing 3:
Calling a constructor, method and destructor as normal routines.

➤ Listing 1: Calling a method in the normal way.

➤ Listing 2: Calling a method as if it were a normal routine.

var
TFoo_ShowInfo: procedure (Handle: TFoo; const Info: String);

...
TFoo_ShowInfo := @TFoo.ShowInfo;

...
procedure TForm1.Button2Click(Sender: TObject);
var
Foo: TFoo;

begin
Foo := TFoo.Create;
TFoo_ShowInfo(Foo, 'Called through a function pointer');
Foo.Free;

end;

var
TFoo_Create: function (ClassRef: TClass; Construct: Boolean): TFoo;
TFoo_Free: procedure (Handle: TFoo);
TFoo_Destroy: procedure (Handle: TFoo; Destroy: Boolean);
TFoo_ShowInfo: procedure (Handle: TFoo; const Info: String);

...
TFoo_Create := @TFoo.Create;
TFoo_ShowInfo := @TFoo.ShowInfo;
TFoo_Free := @TFoo.Free;
TFoo_Destroy := @TFoo.Destroy;

...
procedure TForm1.Button3Click(Sender: TObject);
var
Foo: TFoo;

begin
Foo := TFoo_Create(TFoo, True);
TFoo_ShowInfo(Foo, 'Called through a function pointer');
//TFoo_Free(Foo);
TFoo_Destroy(Foo, True)

end;

June 2001 The Delphi Magazine 29

non-nil before calling the destruc-
tor for you), but the choice is there.
Listing 3 shows the birth, life and
death of a Delphi object controlled
solely through function pointers.
These three listings have all been
taken from the sample QtCopy.dpr
project which is included on this
month’s disk.

The Qt interface library makes
function pointers like these avail-
able for every method. The pro-
cess of creating the source for this
library was doubtless automated
in some way and the library ends
up exporting a massive number of
routines (over 3,300 of them).
Classes exported in this non-object
fashion are sometimes called flat-
tened classes, so from now on I’ll
refer to any non-object representa-
tion of a method as a flat method.

The CLXDisplay API
According to the DEPLOY file
installed with Kylix, the import unit
for the Qt interface library is for-
mally known as the CLXDisplay
API. Granted, it provides the API
for VisualCLX components, as they
are based on Qt classes made
accessible through the unit, but I
have not seen the term used
anywhere else yet.

The import unit is called Qt.pas
and in Kylix 1.0 is 8,821 lines long.
It has a lot of stuff in it. It starts
with a few basic types such as
PInteger, PByte, TPointArray,
TIntArray, HANDLE and HBITMAP and
then goes into the Qt stuff proper.

Scattered around you find a
number of enumerated types
defined, which are required by var-
ious Qt methods, and here we
immediately see something new in
the language. In C, the individual
values of an enumerated type can
be initialised with specified values,
since they are all treated as integer
constants.

ObjectPascal has not supported
this ability before, because the
language is more strongly typed
than C. Each value in an enumer-
ated type is not considered an inte-
ger, but a value from the specified
type. Without a suitable typecast
an enumerated type value and an
integer are not interchangeable,
although internally they are stored

as integers with incrementing
values starting at 0.

Now ObjectPascal has been
extended to support this initialised
value concept in order to allow the
types to be mapped across easily.
Listing 4 shows an example from
Qt.pas. For more information, look
up enumerated types in the help
and read the section entitled Enu-
merated types with explicitly
assigned ordinality.

In truth, according to the new
rules of the language, Listing 4 has
more in it than it actually requires
to get the same outcome. Listing 5
shows a slightly less explicit listing
that has the same effect.

Handle Classes
Another thing that strikes you as
you browse through the unit is
that, despite my assertion that all
the classes are exported as collec-
tions of flat methods, there are still
a number of classes defined (some
of them are shown in Listing 6).
Whilst all the Qt methods are
indeed accessed as flat methods,
almost all of them still need object

pointers passed to them, which
are maintained in the ObjectPascal
code. Remember that the Qt
objects are C++ objects, not Kylix
or Delphi objects, so there are no
pre-defined Object Pascal types
for the classes.

Rather than just use raw pointer
types to keep track of these
objects, Borland R&D decided to
keep a certain level of type
strictness with regard to these
object pointers and so defined a
number of stub classes to mirror
the class hierarchy in Qt itself. A
reference to a Qt QButton object is
typically stored in a QButtonH
Object Pascal object reference.
Note that from within Object
Pascal, this object reference does
not give direct access to the
QButton methods, but you can pass
a QButtonH object reference (or
anything inherited from QButtonH,
such as QCheckBoxH, QPushButtonH
or QRadioButtonH) as the extra first
parameter to any QButton flat
method.

Because you cannot call the Qt
methods directly through these

type
QSliderTickSetting = (
QSliderTickSetting_NoMarks, //1st value will be 0
QSliderTickSetting_Above, //this will be 1
QSliderTickSetting_Left = 1 { $1 },
QSliderTickSetting_Below, //this will be 2
QSliderTickSetting_Right = 2 { $2 },
QSliderTickSetting_Both); //this will be 3

➤ Listing 4: An enumerated type with initialised values.

➤ Listing 5: A more concise version of Listing 4.

type
QtH = class(TObject) end;
QObjectH = class(QtH) end;
QApplicationH = class(QObjectH) end;
QClxApplicationH = class(QApplicationH) end;

QWidgetH = class(QObjectH) end;
QOpenWidgetH = class(QWidgetH);
QButtonH = class(QWidgetH) end;
QPushButtonH = class(QButtonH) end;
QClxBitBtnH = class(QPushButtonH) end;

QComboBoxH = class(QWidgetH) end;
QOpenComboBoxH = class(QComboBoxH) end;

QFrameH = class(QWidgetH) end;
QTableViewH = class(QFrameH) end;
QMultiLineEditH = class(QTableViewH) end;

➤ Listing 6: Part of the ObjectPascal Qt handle hierarchy.

type
QSliderTickSetting = (
QSliderTickSetting_NoMarks = 0 { $0 },
QSliderTickSetting_Above = 1 { $1 },
QSliderTickSetting_Left = 1 { $1 },
QSliderTickSetting_Below = 2 { $2 },
QSliderTickSetting_Right = 2 { $2 },
QSliderTickSetting_Both = 3 { $3 });

30 The Delphi Magazine Issue 70

object references, they are some-
times called opaque references.
They do point to the Qt C++ object,
but do not let you see its methods.
Incidentally, since these opaque
references are declared as Object
Pascal classes for the benefit of
type strictness, you must resist
any temptations to call TObject
methods through them, such as
ClassName, which would typically
give you an Access Violation for
your trouble.

You will notice the trailing H at
the end of each class name in List-
ing 6, which stands for handle. Gen-
erally, a handle (sometimes
historically called a magic cookie)
is some number which uniquely
identifies an instance of something
(for example, a file handle or
window handle).

Any ObjectPascal object refer-
ence is stored as a pointer, which is
interpreted as a memory address,
but is just a number in reality. An
ObjectPascal object reference
declared as one of these method-
less class types, which points to a
Qt C++ object, is often referred to
as a Qt widget handle, or sometimes
just a Qt handle. So in this context,
a Qt widget handle is an opaque
reference to a Qt C++ widget.

Qt Flat Methods
We saw some hand-crafted flat
methods in Listing 2 and Listing 3,
and now it’s time to see some of the
official Qt flat methods. Listing 7
shows some of the flat methods of
the QPushButton class. You can see
the constructor, which returns a
QPushButtonH handle, whilst all the
other methods (including the
destructor) take a QPushButtonH as
the first parameter.

The TButton VisualCLX class
hides the need to call these flat
methods most of the time. How-
ever, just as in VCL programs,
where you sometimes need to call
the Windows API when a VCL class
does not cater for your every
requirement, you may also need to
call the CLXDisplay API from time
to time when a VisualCLX class
doesn’t satisfy all your needs.

Listing 8 shows how you would
create a QPushButton widget from
scratch, with the form as its
parent, call some of its methods
(one of which happens to be inher-
ited from QButton and one from
QWidget) and then destroy it. You
should see it looks much the same
as the code shown in Listing 3.

Note that the code is pointless
since the TButton class does all this
with more convenient properties.
However, it should give you the
general idea.

More From
The CLXDisplay API
If you take a close look at Listing 6,
you will see a couple of handle
classes being defined which war-
rant some further explanation. The
QClxBitBtnH and QClxApplicationH
classes evidently seem to be
CLX-specific. Indeed, there are a
number of classes defined with the
QClxprefix. They represent classes
that do not exist in the real Qt
library, but have been imple-
mented in the interface library by
Borland as classes inherited from
Qt classes.

The other noteworthy classes
are QOpenWidgetH and QOpenCombo-
BoxH. Classes with names in the
form QOpenXXX have also been
defined by Borland, but are shal-
low descendants of the Qt QXXX
class. These are access classes
and are present to allow the inter-
face library to access and ulti-
mately export some of the
protected member functions of the
underlying Qt classes.

Occasionally in the CLX source,
the developers required access to
these methods and access classes
provide an easy means of accom-
plishing this. An example of this
would be in TWidgetControl.Re-
SubmitFlags where they need to
overcome a Qt issue that occurs
when a Qt widget is given a new
parent and need to call the pro-
tected QWidget clearWFlags and
setWFlagsmethods. To do this they
call QOpenWidget_clearWFlags and
QOpenWidget_setWFlags.

Qt In VisualCLX Components
Windowed VCL controls (those
derived from TWinControl) have a
Handle property that refers to the
underlying control’s window
handle. VisualCLX controls
(derived from the corresponding
TWidgetControl) still have a Handle
property, but rather than being a
window handle, it is a Qt widget
handle (see Figure 3).

The TWidgetControl class defines
Handle as a generic QWidgetH and
implements a private GetHandle
function to return a value of the
same type. Most components that
inherit from TWidgetControl actu-
ally redefine Handle to be of a more

function QPushButton_create(parent: QWidgetH; name: PAnsiChar): QPushButtonH;
overload; cdecl;

function QPushButton_create(text: PWideString; parent: QWidgetH; name:
PAnsiChar): QPushButtonH; overload; cdecl;

procedure QPushButton_destroy(handle: QPushButtonH); cdecl;
procedure QPushButton_setGeometry(handle: QPushButtonH; x: Integer; y: Integer;
w: Integer; h: Integer); overload; cdecl;

procedure QPushButton_setGeometry(handle: QPushButtonH; p1: PRect); overload;
cdecl;

➤ Listing 7: Some of the flat
methods of Qbutton.

uses
Qt, QTypes;

...
var
Btn: QPushButtonH;

...
procedure TForm1.FormCreate(Sender: TObject);
var
Msg: TCaption;

begin
Btn := QPushButton_create(Handle, PChar('Btn'));
QPushButton_setGeometry(Btn, 10, 10, 75, 25);
Msg := 'Press me';
QButton_setText(Btn, PWideString(@Msg));
QWidget_show(Btn);

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
QPushButton_destroy(Btn);

end;

➤ Listing 8: Creating, using and destroying a QButton widget.

June 2001 The Delphi Magazine 31

appropriate type inherited from
QWidgetH.

Handle is initialised when the
widget is created by the virtual
method TWidgetControl.Create-
Widget (called from TWidgetCont-
rol.CreateHandle). More initialis-
ation of the Qt widget, such as set-
ting initial property values, is
performed in InitWidget, which is
also virtual and called from
CreateHandle. The widget gets
destroyed in the virtual TWidget-
Control.DestroyWidget method,
called from TWidgetControl.
DestroyHandle or the control’s
destructor.

Certain aspects of the widget’s
behaviour are set with widget flags
(values from Qt’s WidgetFlags enu-
merated type), which have names
like WidgetFlags_WType_Modal, Widg-
etFlags_WStyle_StaysOnTop, Widg-
etFlags_WStyle_SysMenu, WidgetFl-
ags_WStyle_Minimize and Widget-
Flags_WStyle_Maximize. A compo-
nent specifies its widget flags by
returning them (combined with
the or operator) from an overrid-
den WidgetFlags method.

Sometimes, a VisualCLX prop-
erty change may necessitate recre-
ating the underlying widget. In this
case, any widget details that need
to be maintained during this pro-
cess should be saved in an overrid-
den version of SaveWidgetState and
restored in RestoreWidgetState.

The Qt Notification Model
Having grasped the purpose of a
VisualCLX component’s Handle
property, the next thing to under-
stand is the mechanism that Qt
uses to notify interested parties of
things that have happened. In
other words, what is the Qt equiva-
lent of Windows messages and
events?

Windows Messages
Before diving in, it might be useful
to have a recap of the model used
in Microsoft Windows and VCL
components. In Windows, when
(for example) the mouse is moved
over a button, or keys are pressed,
messages are sent or posted to the
button, namely WM_MOUSEMOVE,
WM_KEYDOWN and WM_KEYUP. When the
mouse is clicked on a button

control, WM_LBUTTONDOWN and
WM_LBUTTONUP messages are sent to
the button. Each of these messages
has additional information pack-
aged with it (such as the mouse
co-ordinates, or an indication of
which key was pressed).

VCL Message Handlers
VCL components pick up Windows
messages of interest using dedi-
cated message handling methods
(for example, WMLButtonDown and
WMLButtonUp). However, they also
offer a generic catch-all message
handler in their virtual WndProc
method. Additionally, a compo-
nent’s messages can be inter-
cepted by another component
assigning a compatible method to
its WindowProc property (which
defaults to pointing at WndProc).

VCL Events
Since the VCL TButton class is inter-
ested in when the button control
has been clicked, it has message
handling methods for WM_LBUTTON-
DOWN and WM_LBUTTONUP. If the mes-
sages arrive in the appropriate
order meaning the button has been
clicked, it responds by triggering a
VCL event, in this case, OnClick.

Another part of the program can
connect to this event in order to be
notified when the event occurs. To
connect to the event, the program
implements a compatible method
called an event handler, and
assigns it to the button object’s
event in order to respond to it.
An event handler is basically a

callback method, and any object’s
event can have at most one event
handler, although any event han-
dler can be shared across multiple
events. This is different to the Qt
widget approach.

X Windows Events
Now let’s look at the model used in
X Windows and the Qt widgets. In X
Windows, when (for example) the
mouse is moved over an X client
window that acts as a button (such
as a QPushButton widget in the Qt
library), or keys are pressed, X
events are sent to the button,
namely MotionNotify, KeyPress and
KeyRelease. When the mouse is
clicked on a button control,
ButtonPress and ButtonRelease X
events are sent to the button. Each
of these X events has additional
information packaged with it (such
as the mouse co-ordinates, or an
indication of the pressed key).

Qt Events And
Virtual Methods
Qt widgets pick up X events, wrap
them up as Qt event objects (inher-
ited from QEvent) and pass them to
dedicated virtual methods (the
Windows version of Qt will instead
package up information from Win-
dows messages into Qt event
objects).

For example, a QMouseEvent
object can represent a mouse click

➤ Figure 3: A VisualCLX
component with a reference
to a Qt widget.

32 The Delphi Magazine Issue 70

thanks to its typemethod returning
either QEventType_MouseButton-
Press or QEventType_MouseButton-
Release. Such an event object
might be passed to a Qt widget’s
mousePressEvent or mouseRel-
easeEvent virtual methods. Qt wid-
gets also offer a generic catch-all
event filter in their virtual event
method.

C++ programmers need to
inherit from the widget in order to
override these virtual methods
and add functionality, but we are
not able to inherit an ObjectPascal
class from a C++ class. Instead, a Qt
widget’s events can be intercepted
by another object (including one
written in ObjectPascal) by pass-
ing the address of an event filter
method to the widget’s install-
EventFilter method (see later).

CLX Events
Since the CLX TButton class is inter-
ested in when the button control
has been clicked, it installs an
event filter (this is actually done at
the TWidgetControl level) and
keeps an eye out for Qt events with
event types of QEventType_
MouseButtonPress and QEventType_
MouseButtonRelease. If the Qt
events arrive in the appropriate
order, meaning the button has
been clicked, it responds by trig-
gering a CLX event, in this case,
OnClick.

Another part of the CLX program
can connect to this event in order
to be notified when the event
occurs in much the same way as in
a VCL program. However, this is
not the end of the story.

Qt Signals And Slots
As well as these low-level events
(mouse move, mouse press and so
on), various Qt widgets already
look out for specific high-level
events (and also state changes that

may be of interest) and allow inter-
ested parties to respond using
another mechanism called a signal.
For example, the QSpinBox widget
wants to notify anyone who is
interested when its value has
changed. To allow the program to
respond to the spin box value
changing without having to inherit
a new C++ class, the widget defines
a signal called valueChanged. At an
appropriate point the valueChanged
signal is emitted (using a C++
macro).

Some other part of the program
can connect to the widget in order
to be notified when the signal
occurs. The program provides a
compatible method called a slot,
which is then connected to the
signal. When the signal occurs, the
slot executes in response. Many
different slots can be connected to
any given signal so this model sup-
ports multiplexing, unlike the VCL.
When a VCL event fires, a single
event handler executes in
response. When a Qt signal fires,
potentially many C++ slots will
execute, one after another.

One of the key differences
between a Qt event and a Qt signal
is that an event can be handled in
an event filter and then killed off,
meaning the event will not get to its
intended recipient. However, it is
not possible to kill off a signal: all
registered slots will be triggered
one after the other, regardless of
what they do.

Unfortunately, because of the
way signals and slots are con-
nected in C++, ObjectPascal meth-
ods are not suitable for direct use
as slots (another reason for the
existence of the Qt interface
library). Instead, VisualCLX uses
hook objects as a way of linking
them together (see later section).
For example, the VisualCLX TSpin-
Edit ancestor, TCustomSpinEdit,

uses a hook object to hook the
QSpinBox valueChanged signal, and
triggers its OnChanged event when
the signal is emitted.

Note that Qt signals should not
be confused with the signals that
occur in the Linux operating
system, despite the same term
being used for both. The Qt signal
is simply a way for a Qt widget to
indicate to other code in the pro-
gram that something possibly
interesting has happened to it; it’s
an intra-application signal. A Linux
signal is typically sent by the oper-
ating system to a program to indi-
cate that something important has
occurred: it’s usually an inter-
application signal.

Message Handlers, RIP?
Since we do not have MS Windows
sending messages around on
Linux, Windows message handlers
are redundant. Ultimately, the
same dynamic methods called by
the VCL message handlers will
now be called in VisualCLX
through Qt slots (Qt signal han-
dlers).

The underlying message dis-
patching logic implemented in
TObject.Dispatch still exists, so
you can still use messages inter-
nally in an application without a
problem, but messages that used
to come from outside the program
are no longer supported in Kylix.
For cross-platform portability,
message handlers should also be
avoided in Delphi CLX applica-
tions as well. Outside application
stimuli now come primarily
through Qt widget signals.

In the VCL, Windows messages
are automatically routed to the
window procedure method
(typically WndProc) and possibly
then deferred to message handling
methods. We now need to start
looking at how a VisualCLX
application can react to Qt widget
signals and events.

Hook Objects
Hook objects are instances of
Borland-written classes imple-
mented in the Qt interface library.
There is a hierarchy of hook
classes, each of which can hook
all the signals supported by the

➤ Listing 9: Part of the Qt hook handle class hierarchy.

type
QObject_hookH = class(TObject) end;
QApplication_hookH = class(QObject_hookH) end;
QWidget_hookH = class(QObject_hookH) end;
QButton_hookH = class(QWidget_hookH) end;
QPushButton_hookH = class(QButton_hookH) end;

QComboBox_hookH = class(QWidget_hookH) end;
QFrame_hookH = class(QWidget_hookH) end;
QTableView_hookH = class(QFrame_hookH) end;
QMultiLineEdit_hookH = class(QTableView_hookH) end;

34 The Delphi Magazine Issue 70

corresponding Qt class (a portion
of the corresponding hook handle
class hierarchy is shown in Listing
9).

For example, the QObject class
defines the destroyed signal, and
the QObject_hook class has an
appropriate slot that can be con-
nected to it. The hook object’s slot
is connected to the signal using its
hook_destroyed method, accessible
through the QObject_hook_hook_
destroyed flat method in the inter-
face library. Similarly, the
QApplication class (inherited from
QObject) defines the lastWindow-
Closed, aboutToQuit and guiThr-
eadAwake signals, and the QApp-
lication_hook class (inherited
from QObject_hook) has slots that
can react to those signals, as well
as the destroyed signal.

For each Qt class that adds sig-
nals, there is a corresponding hook
class that allows VisualCLX meth-
ods to hook onto its signals. There
are also hook classes for Qt base
classes that do not define new sig-
nals, such as QWidget_hook. When-
ever a VisualCLX component
needs to hook signals from a Qt
class, it uses the corresponding
hook class (the same name as the
Qt class with a _hook suffix).

When constructing a hook
object for a Qt widget, the hook
constructor takes the Qt widget
handle (the Handle property of the
corresponding VisualCLX compo-
nent); however, the parameter is
actually defined as a generic
QObject handle (QObjectH).

So, for example, to hook signals
in a QMultiLineEdit, the TMemo
component creates a QMultiLine-
Edit_hook object, passing the
Handleproperty to the constructor.
This is done immediately after cre-
ating the Qt widget itself in the
CreateWidget method. The hook
constructor returns a hook object

handle which is stored in the com-
ponent’s protected Hooksproperty,
defined as type QWidget_hookH in
TWidgetControl. Figure 4 illustrates
the relationships between the
various objects that have been
discussed so far.

Hooking A Qt Signal
In order to actually connect
VisualCLX methods to the Qt sig-
nals, TWidgetControl has a virtual
HookEvents method, called from
CreateHandle directly after Init-
Widget. This method first verifies
that there is a hook object (creat-
ing a generic QWidget_hook if not)
and hooks the widget’s destroyed
signal (which it inherits from
QObject) with its own Destroyed-
Hook method (the effective equiva-
lent of an ObjectPascal slot).

DestroyedHook has the exact
same signature as the correspond-
ing Qt signal (which you find in the
Qt documentation for QObject,
albeit in C++ syntax). Trolltech
defines the signal as:

void QObject::destroyed()

A void function in C++ corresponds
to an ObjectPascal procedure, and
all the Qt C++ code is compiled
with the C calling convention, so

DestroyedHook is declared as:

procedure DestroyedHook; cdecl;

The job of this method is to call the
virtual WidgetDestroyed method
when the underlying Qt widget
ceases to exist, and Widget-
Destroyed by default destroys the
hook object referred to by the
Hooks property.

All the hook object methods
take the obligatory hook object
handle as the first parameter and
one extra parameter called hook.
This parameter represents the
ObjectPascal hook method and is
consistently defined as type
QHookH, which itself is defined as a
TMethod (a record which can hold a
pointer to a method as well as a
pointer to an object instance that
will execute the method, in other
words Self).

Various signals have specific
parameter requirements, so there
are a whole host of procedural
types defined in Qt.pas, one for
each signal. Listing 10 shows a
small number of them. Note that
despite being procedural types for
Pascal slots, they all include the
word Event, which can be quite
confusing.

When hooking a signal, it is
typical for a component to declare
a TMethod or QHookH variable,

➤ Figure 4: A VisualCLX
component with a reference
to a Qt widget and a hook
object.

type
QObject_destroyed_Event = procedure () of object cdecl;
QApplication_lastWindowClosed_Event = procedure () of object cdecl;
QApplication_aboutToQuit_Event = procedure () of object cdecl;
QApplication_guiThreadAwake_Event = procedure () of object cdecl;
QButton_pressed_Event = procedure () of object cdecl;
QMultiLineEdit_textChanged_Event = procedure () of object cdecl;
QMultiLineEdit_returnPressed_Event = procedure () of object cdecl;
QListBox_highlighted_Event = procedure (index: Integer) of object cdecl;

➤ Listing 10: Procedural types
for some Qt signals.

June 2001 The Delphi Magazine 35

typecast it to the relevant proce-
dural type for the signal in ques-
tion, and then assign the hook
method to it. This variable is then
passed to the hook object method
that hooks the desired signal. You
can see the code from TCustom-
Memo.HookEvents hooking two sig-
nals in Listing 11. Also, Figure 5
illustrates the QMultiLineEdit
signal textChanged occurring and
triggering the corresponding slot
in the hook object, which then calls
the TextChangedHook method in the
TMemo component.

This approach allows a compo-
nent to hook into any individual
signal it chooses, using an appro-
priate C calling convention
method. All that is left now is to see
how it can use an event filter to
hook into the stream of events
delivered to the widget, as
mentioned earlier.

Events And Event Filters
The solution to this lies in event
filters. TWidgetControl installs an
event filter in its HookEvents
method (see Listing 12). The filter
method (MainEventFilter) again
uses C calling conventions and is
passed every event sent to the
widget. It first filters out any
design-time events and then
passes the remainder onto the
virtual EventFilter method.

The filter is installed by calling
the Qt_hook_hook_events flat
method of whatever hook object

procedure TCustomMemo.HookEvents;
var
Method: TMethod;

begin
inherited;
QMultiLineEdit_textChanged_Event(Method) := TextChangedHook;
QMultiLineEdit_hook_hook_textChanged(QMultiLineEdit_hookH(Hooks), Method);
QMultiLineEdit_returnPressed_Event(Method) := ReturnPressedHook;
QMultiLineEdit_hook_hook_returnPressed(QMultiLineEdit_hookH(Hooks), Method);

end;

➤ Listing 11: TCustomMemo hooking the signals it needs.

➤ Figure 5: A Qt widget signal triggering a VisualCLX method.

you are using, which then calls the
relevant widget’s installEvent-
Filter method for you. It seems
that the hook_events method exists
in all hook objects and is probably
defined (at the C++ level) in the
base hook class (Qt_hook) that all
the C++ hook classes inherit from.
The hook handle class hierarchy in
Qt.pas (shown in Listing 9) is there-
fore incomplete, since QObject_
hook inherits from Qt_hook, which
inherits from QObject.

We can now see that hook
objects perform two distinct jobs.
Firstly, they can hook any individ-
ual signal in the corresponding
widget they work with, using an

internal slot to chain back to a CLX
method. Secondly, they can install
a CLX event filter for the widget.

The EventFiltermethod has this
signature:

function EventFilter(Sender:
QObjectH; Event: QEventH):
Boolean;

The Sender parameter represents
the Qt widget generating the event
and Event is the handle for an
object that represents the event.
The Qt documentation describes
the QEvent base class which only
has one method, called type. This
returns a value from the QEvent-
Type enumerated type to tell you
what the event is. The Boolean
return value is set to True to indi-
cate the event has been handled
and should not go any further (it
gets successfully filtered away). A
value of False lets the event be
passed through to the next object
in line in the object’s event filter
list, which may or may not be the
intended recipient. If all event
filters return False, the event is
given to the underlying widget.

Once you know the event type,
you can typecast the Event param-
eter into an appropriate descen-
dant class. For example, if the
QEvent_type flat method returns
QEventType_KeyPress, you can type-
cast Event into a QKeyEventH handle
which then allows you to call the

procedure TWidgetControl.HookEvents;
var
Method: TMethod;

begin
if FHooks = nil then begin
HandleNeeded;
FHooks := QWidget_hook_create(Handle);

end;
TEventFilterMethod(Method) := MainEventFilter;
Qt_hook_hook_events(FHooks, Method);
QObject_destroyed_event(Method) := Self.DestroyedHook;
QObject_hook_hook_destroyed(FHooks, Method);

end;

➤ Listing 12: TWidgetControl hooking the destroyed signal.

36 The Delphi Magazine Issue 70

flat methods of the QKeyEvent class
(for example, QKeyEvent_key, which
returns the pressed key as a Qt key
constant).

Listing 13 shows the EventFilter
method from the TCustomRadio-
Group class (the ancestor of
TRadioGroup). If a QEventType_show
event comes along, the ForceLayout
method is called. If a key press
event is generated from the Tab
key, the event is unconditionally
accepted, otherwise it defers to the
inherited version of EventFilter.

As you can appreciate, there are
lots of different event types
defined by Qt (see the definition of
QEventType in Qt.pas) and many of
them have corresponding event
classes that will make potentially
useful information available to you
(see Listing 14). If there is no infor-
mation to supply, there is usually
no specific event class.

Custom Events
Many VCL programmers are used
to defining custom Windows

messages and sending them to
windows (usually controls) in their
own application. The equivalent
process in Qt involves sending
custom events.

You make custom events by
defining event type values. These
must be values of type QEventType,
but with ordinal values greater
than or equal to the QEvent-
Type_ClxUser constant defined in
the Qt.pas unit. The VisualCLX
code defines its own internal
custom events with values greater

than or equal to QEventType_
ClxBase (the same as the Qt con-
stant QEventType_User), but lower
than QEventType_ClxUser.

When you check the type of an
event object in EventFilter,
QEvent_type will return your
custom event type value for you.
You can then typecast the Event
parameter into a QCustomEventH
handle. A QCustomEvent object
allows arbitrary data to be stored
by passing a raw pointer through
as one of its constructor parame-
ters (which begs the question of
how you send these custom
events, more on this shortly). You
can access this data using the
QCustomEvent_data flat method.

As an example from the
VisualCLX code, the TCustomList-
Box class’s EventFilter method
checks for QEventType_MouseBut-
tonPress events and also for a
custom event, QEventType_LBClick,
defined in QStdCtrls.pas (see
Listing 15).

Sending Events
For the most part, events are sent
by the Qt widgets themselves, but
sometimes components need to
dispatch events (often custom
events) to widgets under program
control. Fortunately this is reason-
ably easy, thanks to a couple of
methods in the QApplication
widget. The QApplication_send-
Event flat method sends an event
directly to a widget and returns the
Boolean value from the event han-
dler, whilst QApplication_post-
Event adds the event to a queue,
which is emptied next time control
returns to the main event loop.

According to the Qt documenta-
tion, these are both static methods

function TCustomRadioGroup.EventFilter(Sender: QObjectH; Event: QEventH):
Boolean;

begin
try
if (QEvent_type(Event) = QEventType_show) then
ForceLayout;

if (QEvent_type(Event) = QEventType_KeyPress) and
(QKeyEvent_key(QKeyEventH(Event)) = Key_Tab) then
Result := False

else
Result := inherited EventFilter(Sender, Event);

except
Application.HandleException(Self);
Result := False;

end;
end;

➤ Listing 13: The radio group event filter.

QEventH = class(QtH) end;
QChildEventH = class(QEventH) end;
QCloseEventH = class(QEventH) end;
QCustomEventH = class(QEventH) end;
QDragLeaveEventH = class(QEventH) end;
QDragResponseEventH = class(QEventH) end;
QDropEventH = class(QEventH) end;
QDragMoveEventH = class(QDropEventH) end;
QDragEnterEventH = class(QDragMoveEventH) end;

QFocusEventH = class(QEventH) end;
QHideEventH = class(QEventH) end;
QKeyEventH = class(QEventH) end;
QMouseEventH = class(QEventH) end;
QMoveEventH = class(QEventH) end;
QPaintEventH = class(QEventH) end;
QResizeEventH = class(QEventH) end;
QShowEventH = class(QEventH) end;
QTimerEventH = class(QEventH) end;
QWheelEventH = class(QEventH) end;

const
QEventType_LBClick = QEventType(Integer(QEventType_ClxBase) + $20);

...
function TCustomListBox.EventFilter(Sender: QObjectH;
Event: QEventH): Boolean;

begin
Result := inherited EventFilter(Sender, Event);
case QEvent_type(Event) of
QEventType_MouseButtonPress:
// don't select on a right-click (Qt default behavior)
Result := QMouseEvent_button(QMouseEventH(Event)) =
ButtonState_RightButton;

QEventType_LBClick:
if not FClicking then begin
FClicking := True;
try
Click;
Result := True;

finally
FClicking := False;

end;
end;

end;
end;

➤ Listing 15: The listbox’s EventFilter method.

➤ Listing 14: The event class hierarchy.

June 2001 The Delphi Magazine 37

(like ObjectPascal class methods)
and so do not require the
QApplication handle to be passed
as the first parameter. Instead the
two parameters (common to both
flat methods) describe the widget
intended to receive the event
(receiver of type QObjectH) and the
event itself (eventof type QEventH).

In order to call either of these
routines, you need to construct a
Qt event object, more often than
not a custom event created with
QCustomEvent_create. There are
two versions of the constructor
you can choose from. One takes
just an event type and the other
takes an event type along with a
pointer value which can be used
for any custom data. Listing 16
shows a snippet from the TWidget-
Control.DestroyWidget method
which creates a custom event and

posts it to the QApplication widget.
The custom data in this case is the
widget’s own Handle (albeit copied
to the local TmpHandle variable).

Incidentally, if you have an event
handler that executes a lot of code
and takes a long time to execute,
you can still call Application.
ProcessMessages periodically to
allow queued events to be pro-
cessed. This method calls down to
the QApplication_processEvents
flat method which processes
events for three seconds, or until
all the events are cleared, which-
ever is shorter.

Nomenclature Summary
Having gone through the key
points of Qt’s usage in VisualCLX, it
might be useful to see a summary

of the naming conventions used by
Borland for all the Qt-related enti-
ties. As an aid to making a general
template, let’s assume there is a
fictitious Qt widget called QFoo that
can generate a signal called bar,
and Borland has written a CLX
component wrapper called TFoo.
Given these starting points, Table
1 lists all the key identifiers
described so far in this article.

Licensing
Whilst this article focuses heavily
on what you can find in the Qt.pas
unit, you must tread carefully
when using it, so as not to contra-
vene any licensing requirements

➤ Listing 16: Posting a custom
event.

Identifier Comments

QFoo This class is implemented in C++ and so this identifier is not present in ObjectPascal

QFooH The QFoo handle class, defined in Qt.pas (a typed opaque pointer). Used to access the
C++ widget from ObjectPascal in a type-safe manner (but the QFoo methods cannot be
directly accessed through this class)

QFoo_create The widget class flat constructor

QFoo_destroy The widget class flat destructor

QFoo_hook The C++ hook class for the QFoo widget. This identifier is not present in ObjectPascal

QFoo_hookH The hook handle class defined in Qt.pas (a typed opaque pointer)

QFoo_hook_create The hook class flat constructor

QFoo_hook_destroy The hook class flat destructor

QFoo_hook_hook_bar The hook class flat method for hooking the QFoo bar signal

QFoo_bar_Event Procedural type that defines the signature of an ObjectPascal handler for the QFoo bar
signal (via a QFoo_hook hook object), despite the type name including the word Event

TFoo The VisualCLX component class that represents the QFoo object

TFoo.Handle This property (of type QFooH) is a handle to the Qt widget

TFoo.Hooks This property, of type QWidget_hookH, actually holds a QFoo_hookH handle to a
QFoo-specific hook object

TFoo.CreateWidget The virtual method that constructs the QFoo widget and then the QFoo_hook hook
object

TFoo.InitWidget The virtual method that sets up any additional properties of the QFoo widget after
having been constructed

TFoo.SaveWidgetState The virtual method that saves any important QFoo properties during widget
reconstruction

TFoo.RestoreWidgetState The virtual method that restores important QFoo properties after widget reconstruction

➤ Table 1: Summary of entities
used in wrapping a Qt widget.

const
QEventType_CMDestroyWidget = QEventType(Integer(QEventType_ClxBase) + $01);

...
QApplication_postEvent(Application.Handle,
QCustomEvent_create(QEventType_CMDestroyWidget, TmpHandle))

38 The Delphi Magazine Issue 70

laid out by Borland. Apart from
what I found in Kylix’s license.txt
file, the key restrictions were in the
DEPLOY file:

‘2.6 Restrictions on CLXDisplay
API (Qt.pas) usage

‘CLXDisplay API, the Qt.pas inter-
face to the Qt runtime, is only
licensed for use in VisualCLX appli-
cations or a component that derives
from TControl in the QControls unit.
A VisualCLX application is an appli-
cation that uses the TApplication
object and uses at least one compo-
nent derived from TControl. You are
not licensed to use Qt.pas to create
applications or components that
exclusively call the Qt.pas inter-
faces. The above restrictions do not
apply to applications or components
licensed under the GPL. A separate
commercial development license
from Trolltech is required for use of
Qt.pas in any manner other than
authorized above.’

This tells us that since Trolltech
allows the development of Linux
GPL applications (well, actually a
modified form of GPL called QPL),
a Kylix GPL application can be writ-
ten that talks directly to Qt.pas and
does not use CLX at all. However,
non-GPL applications can only
make use of Qt.pas if they are con-
sidered a VisualCLX application,
which means including the Appli-
cation object and at least one
TControl-based component.

If you want to write a pure Qt
non-GPL application, you must
purchase an appropriate licence
from Trolltech. Also, since
Trolltech does not support QPL
development on non-Linux plat-
forms, you are not allowed to write
GPL applications for Windows.

More details about the rules con-
cerning what a GPL application
must do (it must come with source,
or at least a link to where source
can be downloaded) will be found
in the DEPLOY file.

Oh, by the way, if you are wor-
ried that Trolltech may one day go
out of business and cause mainte-
nance problems for your CLX
applications, there are two things
to note. One is that Borland bought
a chunk of Trolltech to help
protect its investment in Qt
(the press release describes the

agreement as Borland making a
minority investment in Trolltech).
The other is the existence of the
KDE Free Qt Foundation which
guarantees the existence of Qt Free
Edition for the development of free
software at all times. If the product
is discontinued by Trolltech, the
Foundation will release the latest
version under the BSD licence.

Summary
This has been quite some journey,
looking at a number of classes
which don’t look much like classes,
and some of which are present
only to bridge a gap between
Object Pascal and C++. I hope that
now the journey is over, some of
the mystery surrounding the use of
the Qt widget set in the CLX
component library has been laid

to rest. As CLX gets used more, and
more CLX components get devel-
oped, there will undoubtedly be
more questions to answer, so keep
an eye on The Delphi Clinic in
future issues.

Acknowledgements
Thanks are due to Adam ‘Sparky’
Markowitz, from Borland Research
& Development, for very helpful
feedback on this article.

Brian Long is a freelance trainer
and problem solver specialising in
Delphi, Kylix and C++Builder
work. Visit www.blong.com or
email him on brian@blong.com

Copyright ©2001 Brian Long

Further Reading

Details of the availability of FreeCLX, the Open Source project for the Linux CLX

library, at http://community.borland.com/article/ 0,1410,27100,00.html.

Trolltech’s website, www.trolltech.com.

Trolltech’s documentation site, http://doc.troll.no.

Download page for Qt Free Edition, which includes the comprehensive

HTML-based Qt documentation, www.trolltech.com/dl/qtfree-dl.html.

The full text of the GPL (GNU Public License) agreement at

www.gnu.org/copyleft/gpl.html.

The full text of Trolltech’s QPL (Q Public License) agreement at

www.trolltech.com/products/downloads/freelicense/license.html.

Announcement of the KDE Free Qt Foundation at www.trolltech.com/company/

announce/foundation.html. This ensures the continued existence of Qt Free

Edition for development of free software.

Press release discussing the Borland’s collaboration with Trolltech at

www.borland.com/about/press/2000/trolltech.html.

Programming With Qt, Matthias Kalle Dalheimer, O’Reilly. Good coverage of how

Qt works and how you use it as a C++ programmer.

Qt Programming in 24 Hours, Daniel Solin, Sams. This also has good coverage, but I

didn’t get on with the writing style as well as the O’Reilly book above.

X Window Programming from Scratch by J. Robert Brown, Que. Not that useful for

Kylix developers but there is some interesting coverage of the X event system

which Qt hides from us.

	The Qt Library
	What Is Qt?
	Why Qt?
	Where Do I Find Out About Qt?
	The Qt Interface Library
	What Are Flat Methods?
	The CLXDisplay API
	Handle Classes
	Qt Flat Methods
	More From The CLXDisplay API
	Qt In VisualCLX Components
	The Qt Notification Model
	Windows Messages
	VCL Message Handlers
	VCL Events
	X Windows Events
	Qt Events And Virtual Methods
	CLX Events
	Qt Signals And Slots
	Message Handlers, RIP?
	Hook Objects
	Hooking A Qt Signal
	Events And Event Filters
	Custom Events
	Sending Events
	Nomenclature Summary
	Licensing
	Summary
	Further Reading
	Acknowledgements

